AP STATISTICS
 TOPIC V: RANDOM VARIABLES

PAUL L. BAILEY

Within this document, we will assume that all probability spaces are finite.

1. Random Variables

Definition 1. Let S be probability space. A random variable on S is a function

$$
X: S \rightarrow \mathbb{R}
$$

A random variable on a probability space S induces the structure of a probability space on the image, as follows. Let S be a probability space, $X: S \rightarrow \mathbb{R}$ a random variable, and $I=\operatorname{range}(X)$. Note that if S is finite, then so is I. For each point $x \in I$, assign the probability $f_{X}(x)$ to be the probability of the preimage of x under X.

Definition 2. Let $X: S \rightarrow \mathbb{R}$ be a random variable. The probability density function (pdf) of X is

$$
f_{X}: \mathbb{R} \rightarrow[0,1] \quad \text { given by } \quad f_{X}(x)=P\left(X^{-1}(x)\right)
$$

This function is also known as the probability mass function (pmf).
Let $X: S \rightarrow \mathbb{R}$ be a random variable. The cumulative density function (cdf) of X is

$$
F_{X}: \mathbb{R} \rightarrow[0,1] \quad \text { given by } \quad F_{X}(x)=P\left(X^{-1}((-\infty, x])\right.
$$

Although the notation f_{X} is standard, we will more frequently use the following notation, which is also standard.

- $P(X=x)=P\left(X^{-1}(x)\right)$
- $P(X \leq x)=P\left(X^{-1}((-\infty, x])\right.$
- $P\left(x_{1} \leq X \leq x\right)=P\left(X^{-1}\left(\left[x_{1}, x_{2}\right]\right)\right.$

Proposition 1. (Dirty Trick Theorem)

Let $X: S \rightarrow \mathbb{R}$ be a random variable. Then

$$
\sum_{x \in \mathbb{R}} P(X=x)=1
$$

Definition 3. Let X and Y be random variables on S. We say that X and Y are independent if, for every $x, y \in \mathbb{R}$,

$$
P(\{s \in X \mid X(s)=x \text { and } Y(s)=y\})=P(X=x) \cdot P(Y=y)
$$

2. Expectation

Definition 4. Let $X: S \rightarrow \mathbb{R}$ be a random variable. The expectation of X is a real number

$$
E(X)=\sum_{x \in \mathbb{R}} x P(X=x)
$$

Proposition 2. Let S be a finite uniform probability space, and let $X: S \rightarrow \mathbb{R}$ be a random variable. Then

$$
E(X)=\frac{1}{|S|} \sum_{s \in S} X(s)
$$

Proof. We view the X as producing a statistical variable on the population S, with mean μ. Let $E_{x}=X^{-1}(x)$ denote the event the $X=x$; then $\left|E_{x}\right|$ is the number of members of S which map to x, and we have

$$
\begin{aligned}
\mu & =\frac{1}{|S|} \sum_{s \in S} X(s) \\
& =\frac{1}{|S|} \sum_{x \in \mathbb{R}} x\left|E_{x}\right| \\
& =\sum_{x \in \mathbb{R}} x \frac{\left|E_{x}\right|}{|S|} \\
& =\sum_{x \in \mathbb{R}} x P(X=x) \\
& =E(x) .
\end{aligned}
$$

That is, the expectation of a random variable on a finite uniform probability space is the average value of the random variable. Thus if we let $\mu=E(X)$, we arrive at the mean of the population's values.

Proposition 3 (Linearity of Expectation). Let X and Y be random variables, and let $a \in \mathbb{R}$. Then
(a) $E(X+Y)=E(X)+E(Y)$;
(b) $E(a X)=a E(X)$.

Proposition 4 (Independence of Expectation). Let X and Y be independent random variables. Then

$$
E(X Y)=E(X) E(Y)
$$

3. Variance

Definition 5. Let S be a finite probability space and let $X: S \rightarrow \mathbb{R}$ be a random variable on S. Let $\mu=E(X)$. The variance of X is

$$
V(X)=\sum_{x \in \mathbb{R}}(x-\mu)^{2} P(X=x)
$$

Proposition 5. Let S be a finite probability space and let $X: S \rightarrow \mathbb{R}$ be a random variable on S. Then

$$
V(X)=E\left(X^{2}\right)-(E(X))^{2} .
$$

Proof. Let $\mu=E(X)$. Then

$$
\begin{aligned}
V(X) & =\sum_{x \in \mathbb{R}}(x-\mu)^{2} P(X=x) \\
& =\sum_{x \in \mathbb{R}} x^{2} P(X=x)-2 \mu \sum_{x \in \mathbb{R}} x P(X=x)+\mu^{2} P(X=x) \\
& =\sum_{x \in \mathbb{R}} x^{2} P(X=x)-2 \mu \sum_{x \in \mathbb{R}} x P(X=x)+\mu^{2} \\
& =\sum_{x \in \mathbb{R}} x^{2} P(X=x)-2 \mu^{2}+\mu^{2} \\
& =\sum_{x \in \mathbb{R}} x^{2} P(X=x)-\mu^{2} \\
& =E\left(X^{2}\right)-(E(X))^{2} .
\end{aligned}
$$

We recall that the variance of a variable is $\sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}$, where N is the size of the population. If we apply this in our current context,

$$
\sigma^{2}=\frac{\sum_{s \in S}(X(s)-\mu)^{2}}{|S|}=\sum_{x \in \mathbb{R}}(x-\mu)^{2} P(X=x) .
$$

Thus we set $\mu(X)=E(X)$ and $\sigma(X)=\sqrt{V(X)}$.
Proposition 6. Let S be a finite probability space. Let X and Y be independent random variables on S and let $a, b \in \mathbb{R}$. Then

$$
V(a X+b Y)=a^{2} V(X)+b^{2} V(Y) .
$$

Proof.

$$
\begin{aligned}
V(a X+b Y) & =E\left((a X+b Y)^{2}\right)-E(a X+b Y)^{2} \\
& =E\left(a^{2} X^{2}+2 a b X Y+b^{2} Y^{2}\right)-(a E(X)+b E(Y))^{2} \\
& \left.=a^{2} E\left(X^{2}\right)+2 a b E(X Y)+b^{2} E\left(Y^{2}\right)\right)-\left(a^{2} E(X)\right)
\end{aligned}
$$

4. Seven Great Discrete Distributions

We now describe the seven great discrete distributions:
(1) Uniform Distribution
(2) Binomial Distribution
(3) Geometric Distribution
(4) Poisson Distribution
(5) Hypergeometric Distribution (Not on AP Exam)
(6) Wilcoxon Distribution (Not on AP Exam)
(7) Survey Distribution

Great Discrete Distribution 1. Uniform Distribution

Let S be a finite set of cardinality n, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{|S|}=\frac{|E|}{N}$.

Let $X: S \rightarrow\{1, \ldots, N\}$ be a bijective function. Then X is a discrete random variable. We say that X has a uniform distribution.

The image of X is $\{1, \ldots, N\}$.
The density of X is

$$
P(X=x)= \begin{cases}\frac{1}{N} & \text { if } \quad x=\operatorname{img}(X) \\ 0 & \text { otherwise }\end{cases}
$$

The expectation of X is

$$
E(X)=\frac{N+1}{2} .
$$

Proof. Thus

$$
\begin{array}{rlr}
E(X) & =\sum_{x \in \mathbb{R}} x P(X=x) & \text { definition of expectation } \\
& =\sum_{k=1}^{N} k \cdot \frac{1}{N} & \text { definition of uniform distribution } \\
& =\frac{1}{N} \sum_{k=1}^{N} k & \text { since } N \text { is constant with respect to } k \\
& =\frac{1}{N}\left(\frac{N(N+1)}{2}\right) & \text { sum of an arithmetic series } \\
& =\frac{N+1}{2} .
\end{array}
$$

Great Discrete Distribution 2. Binomial Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{|S|}=\frac{|E|}{N}$.

Let $R \subset S$ with $|R|=r$ and let $p=P(R)=\frac{r}{N}$.
Define a discrete random variable $Y: S \rightarrow \mathbb{R}$ by

$$
Y(s)= \begin{cases}1 & \text { if } s \in R \\ 0 & \text { if } s \notin R\end{cases}
$$

We say that Y is the bernoulli random variable associated to the event R.

The density of Y is

$$
P(Y=y)= \begin{cases}p & \text { if } y=1 \\ 1-p & \text { if } y=0 \\ 0 & \text { otherwise }\end{cases}
$$

Let n be a positive integer. Let $T=\times_{i=1}^{n} S$, the cartesian product of S with itself n times. Then $|T|=N^{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F)=\frac{|Q|}{|T|}=\frac{|F|}{N^{n}}$.

Define a discrete random variable $X: T \rightarrow \mathbb{R}$ by

$$
X\left(s_{1}, \ldots, s_{n}\right)=\sum_{i=1}^{n} Y\left(s_{i}\right)
$$

We say that X has a binomial distribution.
The image of X is

$$
\operatorname{img}(X)=\{0,1,2, \ldots, n\} .
$$

The density of X is

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

The expectation of X is

$$
E(X)=n p
$$

Proof. Let $q=1-p$. Note that $(n-1)-(k-1)=n-k$, so

$$
k\binom{n}{k}=k \frac{n!}{k!(n-k)!}=n \frac{(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1}
$$

Thus

$$
\begin{array}{rlr}
E(X) & =\sum_{x \in \mathbb{R}} x P(X=x) & \text { definition of expectation } \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k} & \text { definition of binomial distribution } \\
& =\sum_{k=1}^{n} k\binom{n}{k} p^{k} q^{n-k} & \text { since for } k=0, k\binom{n}{k} p^{k} q^{n-k}=0 \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k} q^{n-k} & \text { since } k\binom{n}{k}=n\binom{n-1}{k-1} \\
& =n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1} q^{n-k} & \text { factor out } n p \\
& =n p \sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j} & \text { put } m=n-1 \text { and } j=k-1 \\
& =n p(p+q)^{n} & \text { Binomial Theorem } \\
& =n p r & \text { since } p+q=1
\end{array}
$$

The variance of X is

$$
V(X)=n p q .
$$

Proof. We know that $V(X)=E\left(X^{2}\right)-(E(X))^{2}$. By definition, $E\left(X^{2}\right)=$ $\sum_{x \in \mathbb{R}} x^{2} P(X=x)$. Let $q=1-p$, so that $p+q=1$. Then

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{k=0}^{n} k^{2}\binom{n}{k} p^{k} q^{n-k} \\
& =\sum_{k=0}^{n} k n\binom{n-1}{k-1} p^{k} q^{n-k} \\
& =n p \sum_{k=1}^{n} k\binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)} \\
& =n p \sum_{j=0}^{m}(j+1)\binom{m}{j} p^{j} q^{m-j} \quad \text { where } m=n-1 \text { and } j=k-1 \\
& =n p\left(\sum_{j=0}^{m} j\binom{m}{j} p^{j} q^{m-j}+\sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j}\right) \\
& =n p\left(\sum_{j=0}^{m} m\binom{m-1}{j-1} p^{j} q^{m-j}+\sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j}\right) \\
& =n p\left((n-1) p \sum_{j=0}^{m}\binom{m-1}{j-1} p^{j-1} q^{(m-1)-(j-1)}+\sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j}\right) \\
& =n p\left((n-1) p(p+q)^{m-1}+(p+q)^{m}\right) \\
& =n p((n-1) p+1) \\
& =n^{2} p^{2}+n p(1-p) \\
& =n p q+n^{2} p^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
V(X) & =E\left(X^{2}\right)-(E(X))^{2} \\
& =n p q+n^{2} p^{2}-(n p)^{2} \\
& =n p q .
\end{aligned}
$$

Great Discrete Distribution 3. Geometric Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{|S|}=\frac{|E|}{N}$.

Let $R \subset S$ with $|R|=r$ and let $p=P(R)=\frac{r}{N}$. Let $Y: S \rightarrow \mathbb{R}$ be the bernoulli random variable associated to R, so that

$$
Y(s)= \begin{cases}1 & \text { if } s \in R ; \\ 0 & \text { if } s \notin R .\end{cases}
$$

Let T be the set of all sequences in S, so that

$$
T=\{\sigma: \mathbb{N} \rightarrow S\}
$$

We wish to put a probability measure on T; however, T is an uncountable set. Let \mathcal{E} be the sigma algebra generated by the sets

$$
E_{n}(\tau)=\{\sigma \in T \mid \sigma(i)=\tau(i) \text { for all } i>n\} .
$$

Define $Q\left(E_{n}(\tau)\right)=\frac{1}{N^{n}}$.
Define a discrete random variable $X: T \rightarrow \mathbb{R}$ by

$$
X(\sigma)=\left\{\begin{array}{l}
\min \{i \in \mathbb{N} \mid Y(\sigma(i))=1\} \quad \text { if this set is nonempty } \\
0 \quad \text { otherwise }
\end{array}\right.
$$

We say that X has a geometric distribution.
The range of X is

$$
\operatorname{img}(X)=\{0,1,2, \ldots\}
$$

The density of X is

$$
f_{X}(x)=\left\{\begin{array}{l}
p(1-p)^{x-1} \quad \text { if } \quad x \in\{1,2, \ldots\} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

The expectation of X is

$$
E(X)=\frac{1}{p}
$$

Proof. We have

$$
\begin{aligned}
E(X) & =\sum_{x \in \mathbb{R}} x P(X=x) \\
& =\sum_{k=1}^{\infty} k P(X=k) \\
& =\sum_{k=0}^{\infty} k p(1-p)^{k-1} \\
& =p \sum_{k=0}^{\infty} k(1-p)^{k-1} \\
& =p \sum_{k=0}^{\infty}\left(-\frac{d}{d p}(1-p)^{k}\right) \\
& =-p \cdot \frac{d}{d p} \sum_{k=0}^{\infty}(1-p)^{k} \\
& =-p \cdot \frac{d}{d p} \frac{1}{1-(1-p)} \\
& =-p \cdot \frac{d}{d p} \frac{1}{p} \\
& =-p \cdot \frac{-1}{p^{2}} \\
& =\frac{1}{p}
\end{aligned}
$$

The variance of X is

$$
V(X)=\frac{1-p}{p^{2}}
$$

Proof. We have

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{x \in \mathbb{R}} x^{2} P(X=x) \\
& =\sum_{k=1}^{\infty} k^{2} P(X=k) \\
& =\sum_{k=0}^{\infty} k^{2} p(1-p)^{k-1} \\
& =p \sum_{k=0}^{\infty} k(k+1)(1-p)^{k-1}-\sum_{k=0}^{\infty} k p(1-p)^{k-1} \\
& =p \sum_{k=0}^{\infty}\left(\frac{d^{2}}{d p^{2}}(1-p)^{k+1}\right)-E(X) \\
& =p \cdot \frac{d^{2}}{d p^{2}} \sum_{k=1}^{\infty}(1-p)^{k}-\frac{1}{p} \\
& =p \cdot \frac{d^{2}}{d p^{2}}\left(\frac{1}{1-(1-p)}-1\right)-\frac{1}{p} \\
& =p \cdot \frac{d^{2}}{d p^{2}}\left(\frac{1}{p}-1\right)-\frac{1}{p} \\
& =p \cdot \frac{2}{p^{3}}-\frac{1}{p} \\
& =\frac{2-p}{p^{2}} .
\end{aligned}
$$

Thus

$$
V(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{2-p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}} .
$$

Okay Discrete Distribution 3. Truncated Geometric Distribution
Let S, R, and Y be as above. Let T be the cartesian product of S with itself n times. Define a discrete random variable $X: T \rightarrow \mathbb{R}$ by

$$
X\left(s_{1}, \ldots, s_{n}\right)=\left\{\begin{array}{l}
\min \left\{i \leq n \mid Y\left(s_{i}\right)=1\right\} \quad \text { if this set is nonempty } \\
0 \quad \text { otherwise }
\end{array}\right.
$$

We say that X has a truncated geometric distribution.

Great Discrete Distribution 4. Poisson Distribution

Let T be an infinite probability space and let $X: T \rightarrow \mathbb{R}$ be a random variable whose density function satisfying the following.

The image of X is

$$
\operatorname{img}(X)=\{0,1,2,3, \ldots\} .
$$

The density of X is

$$
f_{X}(x)= \begin{cases}e^{-\lambda} \frac{\lambda^{x}}{x!} & \text { for } x \in \operatorname{img}(X) \\ 0 & \text { otherwise }\end{cases}
$$

We say that X has a Poisson distribution.

The expectation of X is

$$
E(X)=\lambda
$$

Proof. Consider that

$$
\begin{aligned}
E(X) & =\sum_{x \in \mathbb{R}} x P(X=x) \\
& =\sum_{k=0}^{\infty} k P(X=k) \\
& =\sum_{k=1}^{\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =\frac{\lambda}{e^{\lambda}} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \\
& =\frac{\lambda}{e^{\lambda}} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \\
& =\frac{\lambda}{e^{\lambda}} e^{\lambda} \quad \text { using the Taylor series for } e^{x} \\
& =\lambda
\end{aligned}
$$

The variance of X is

$$
V(X)=\lambda
$$

Proof. Consider that

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{x \in \mathbb{R}} x^{2} P(X=x) \\
& =\sum_{k=0}^{\infty} k^{2} P(X=k) \\
& =\sum_{k=1}^{\infty} k^{2} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =\frac{\lambda}{e^{\lambda}} \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} \\
& =\frac{\lambda}{e^{\lambda}}\left(\sum_{k=1}^{\infty}(k-1) \frac{\lambda^{k-1}}{(k-1)!}+\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\right) \\
& =\frac{\lambda}{e^{\lambda}}\left(\lambda \sum_{k=2}^{\infty}(k-2) \frac{\lambda^{k-2}}{(k-2)!}+\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\right) \\
& =\frac{\lambda}{e^{\lambda}}\left(\lambda \sum_{i=0}^{\infty} i \frac{\lambda^{i}}{i!}+\sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}\right) \\
& =\frac{\lambda}{e^{\lambda}}\left(\lambda e^{\lambda}+e^{\lambda}\right) \\
& =\lambda(\lambda+1) \\
& =\lambda^{2}+\lambda .
\end{aligned}
$$

Thus

$$
V(X)=E\left(X^{2}\right)-(E(X))^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda .
$$

The Poisson distribution is the limit of the binomial distribution in the following sense.

Let $p \in(0,1)$ and let X_{n} be a random variable with binomial (n, p) distribution. Then $\mu=E(n)=n p$, so $p=\mu / n$. Let $\rho_{n}: \mathbb{R} \rightarrow \mathbb{R}$ denote the density of the $n^{\text {th }}$ binomial distribution. For $x=0,1, \ldots, n$, we have

$$
\begin{aligned}
\rho(x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\frac{n(n-1)(n-2) \cdots(n-x+1)}{x!}\left(\frac{\mu}{n}\right)^{x}\left(1-\frac{\mu}{n}\right)^{n-x} \\
& =\frac{n}{n} \cdot \frac{n-1}{n} \cdots \cdots \frac{n-x+1}{n} \cdot \frac{\mu^{x}}{x!} \cdot\left(1-\frac{\mu}{n}\right)^{n}\left(1-\frac{\mu}{n}\right)^{-x}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ yields

$$
\rho(x)=\frac{\mu^{x} e^{-\mu}}{x!}
$$

It is simply traditional to use λ as opposed to μ for the Poisson distribution.

Great Discrete Distribution 5. Hypergeometric Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{N}$.

Let $R \subset S$ with $|R|=r$ and let $p=P(R)=\frac{r}{N}$. Let $Y: S \rightarrow \mathbb{R}$ be the bernoulli random variable associated to R, so that

$$
Y(s)= \begin{cases}1 & \text { if } s \in R \\ 0 & \text { if } s \notin R\end{cases}
$$

The expectation of Y is

$$
E(Y)=p
$$

Let n be an integer such that $0 \leq n \leq N$. Set

$$
T=\{A \in \mathcal{P}(S)| | A \mid=n\}
$$

Then $|T|=\binom{N}{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F)=\frac{|F|}{|T|}=\frac{|F|}{\binom{N}{n}}$.

Define a random variable $X: T \rightarrow \mathbb{R}$ by

$$
X(A)=\sum_{a \in A} Y(a)
$$

Then $X(A)=|A \cap R|$.
The image of X is

$$
\operatorname{img}(X)=\{0,1, \ldots, n\}
$$

The density of X is

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{\binom{r}{x}\binom{N-x}{n-x}}{\binom{N}{n}} \quad \text { if } \quad x \in \operatorname{img}(X) \\
0 \quad \text { otherwise }
\end{array}\right.
$$

The expectation of X is

$$
E(X)=\frac{n r}{N}=n p
$$

Obtain this as follows. For $a \in S$, the number of sets in T containing a is $\binom{N-1}{n-1}$. Thus

$$
\begin{aligned}
E(X) & =\frac{1}{|T|} \sum_{A \in T} X(A) \\
& =\frac{1}{|T|} \sum_{A \in T} \sum_{a \in A} Y(a) \\
& =\frac{1}{|T|} \sum_{a \in R}|\{A \in T \mid a \in A\}| \\
& =\frac{1}{|T|} \sum_{a \in R}\binom{N-1}{n-1} \\
& =\frac{\binom{N-1}{n-1} r}{\binom{N}{n}} \\
& =\frac{n r}{N} .
\end{aligned}
$$

Great Discrete Distribution 6. Wilcoxon Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{N}$.

Let $Y: S \rightarrow\{1,2, \ldots, N\}$ be a bijective random variable.
The expectation of Y is

$$
E(Y)=\frac{1}{N} \sum_{i=1}^{N} i=\frac{1}{N} \cdot \frac{N(N+1)}{2}=\frac{N+1}{2} .
$$

Let n be an integer such that $0 \leq n \leq N$. Set

$$
T=\{A \in \mathcal{P}(S)| | A \mid=n\} .
$$

Then $|T|=\binom{N}{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F)=\frac{|F|}{\binom{N}{n} \text {. }}$

Define a random variable $X: T \rightarrow \mathbb{R}$ by

$$
X(A)=\sum_{a \in A} Y(a)
$$

We say that X has a Wilcoxon distribution.
The image of X is

$$
\operatorname{img}(X)=\left\{\frac{n(n+1)}{2}, \frac{n(n+1)}{2}+1, \ldots, \frac{N(N+1)}{2}-\frac{(N-n)(N-n+1)}{2}\right\}
$$

The density of X is difficult to describe.
The expectation of X is

$$
E(X)=\frac{n(N+1)}{2}
$$

Great Discrete Distribution 7. Sample Survey Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{N}$.

Let $Y: S \rightarrow \mathbb{R}$ be a discrete random variable.
Let n be an integer such that $0 \leq n \leq N$. Set

$$
T=\{A \in \mathcal{P}(S)| | A \mid=n\} .
$$

Then $|T|=\binom{N}{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F)=\frac{|F|}{\binom{N}{n}}$.

Define a random variable $X: T \rightarrow \mathbb{R}$ by

$$
X(A)=\sum_{a \in A} Y(a)
$$

We say that X has a sample survey distribution.
The image of X is determined by the image of Y.
The density of X is difficult to describe.
The expectation of X is

$$
E(X)=n E(Y)
$$

Obtain this as follows.

$$
\begin{aligned}
E(X) & =\frac{1}{|T|} \sum_{A \in T} X(A) \\
& =\frac{1}{|T|} \sum_{A \in T} \sum_{a \in A} Y(a) \\
& =\frac{1}{|T|} \sum_{a \in S}|\{A \in T \mid a \in A\}| \cdot Y(a) \\
& =\frac{1}{|T|} \sum_{a \in S}\binom{N-1}{n-1} Y(a) \\
& =\frac{\binom{N-1}{n-1}}{\binom{N}{n}} \sum_{a \in S} Y(a) \\
& =\frac{n}{N} \sum_{a \in S} Y(a) \\
& =n E(Y) .
\end{aligned}
$$

5. Random Vectors

Definition 6. Let (S, ε, P) be a probability space. A function $\vec{X}: S \rightarrow \mathbb{R}^{n}$ is called a random vector if $\vec{X}^{-1}\left((-\infty, a]^{n}\right) \in \mathcal{E}$ for every $a \in \mathbb{R}$.
Proposition 7. Let $\vec{X}: S \rightarrow \mathbb{R}^{n}$ be a random variable.
(a) If $B \subset \mathbb{R}$ is an box, then $X^{-1}(B) \in \mathcal{E}$.
(b) If $\vec{x} \in \mathbb{R}^{n}$, then $\vec{X}^{-1}(x) \in \mathcal{E}$.

Remark 1. Let $\left\{A_{1}, \ldots, A_{n}\right\}$ be a collection of sets and let $A=\times_{i=1}^{n}$ be their cartesian product. Define a function $\pi_{i}: A \rightarrow A_{i}$ by $\pi_{i}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$. This function is called projection on the $i^{\text {th }}$ component.

Let $f: B \rightarrow A$ be a function. Define a function $f_{i}: B \rightarrow A_{i}$ by $f_{i}=\pi_{i} \circ$ f. This function is called the $i^{\text {th }}$ component function of f. We see that $f(b)=$ $\left(f_{1}(b), \ldots, f_{n}(b)\right)$.

Let $\vec{a}=\left(a_{1}, \ldots, a_{n}\right) \in A$. Then $f^{-1}(\vec{a})=\cap_{i=1}^{n} f_{i}^{-1}\left(a_{i}\right)$.
Let $A=A_{1} \times A_{2}$. Let $f: B \rightarrow A$. Let $\vec{a}=\left(a_{1}, a_{2}\right)$. Then
(a) $f^{-1}(\vec{a})=f_{1}^{-1}\left(a_{1}\right) \cap f_{2}^{-1}\left(a_{2}\right)$;
(b) $f_{1}^{-1}\left(a_{1}\right)=\cup_{a_{2} \in \operatorname{img}\left(f_{2}\right)} f_{2}^{-1}\left(a_{2}\right)$.

Proposition 8. Let $\vec{X}: S \rightarrow \mathbb{R}^{n}$ and let $X_{i}: S \rightarrow \mathbb{R}$ be the $i^{\text {th }}$ component function of \vec{X}. Then X_{i} is a random variable.
Definition 7. Let $\vec{X}: S \rightarrow \mathbb{R}^{n}$ be a random vector.
We say that \vec{X} is discrete if $\vec{X}(S)$ is countable.
Definition 8. Let $\vec{X}: S \rightarrow \mathbb{R}^{n}$ be a discrete random vector. The joint density of \vec{X} is a function

$$
f_{\vec{X}}: \mathbb{R} \rightarrow[0,1] \text { given by } f_{\vec{X}}(\vec{x})=P\left(X^{-1}(\vec{x})\right)
$$

Proposition 9. Dirty Trick Theorem Revisited

Let $\vec{X}: S \rightarrow \mathbb{R}^{n}$ be a discrete random vector. Then

$$
\sum_{\vec{x} \in \operatorname{img}(\vec{X})} f_{\vec{X}}(\vec{x})=1
$$

Let $[X=x]$ denote the preimage of x under the random variable X.
Proposition 10. Let $\vec{X}: S \rightarrow \mathbb{R}^{n}$ be a discrete random vector. Let $x \in \operatorname{img}(\vec{X})$. Then $f_{\vec{X}}(x)=P\left(\cap_{i=1}^{n}\left[X_{i}=x_{i}\right]\right)$.
Proposition 11. Let $\vec{X}: S \rightarrow \mathbb{R}^{2}$ be a discrete random vector. Let $X, Y: S \rightarrow \mathbb{R}$ be the components of \vec{X}. Then

$$
f_{X_{1}}(x)=\sum_{y \in \operatorname{img}(Y)} f_{\vec{X}}(x, y)
$$

Multinomial Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{|S|}=\frac{|E|}{N}$.

Let R_{1}, \ldots, R_{n} be disjoint events.
Let $R_{0}=S \backslash \cup_{i=1}^{n} R_{i}$, so that $\left\{R_{0}, R_{1}, \ldots, R_{n}\right\}$ form a partition of S.
Let $Y_{0}, Y_{1}, \ldots, Y_{n}: S \rightarrow \mathbb{R}$ be the corresponding Bernoulli random variables.
Let $p_{i}=P\left(R_{i}\right)$.
Let n be a positive integer. Let $T=\times_{i=1}^{n} S$, the cartesian product of S with itself n times. Then $|T|=N^{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F)=\frac{|Q|}{|T|}=\frac{|F|}{N^{n}}$.

Define discrete random vectors $X_{i}: T \rightarrow \mathbb{R}$ by

$$
X\left(s_{1}, \ldots, s_{n}\right)=\sum_{i=1}^{n} Y\left(s_{i}\right) .
$$

Define a discrete random vector $\vec{X}: T \rightarrow \mathbb{R}^{n}$ by $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$.

Multivariate Hypergeometric Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \rightarrow[0,1]$ is given by $P(E)=\frac{|E|}{N}$.

Let R_{1}, \ldots, R_{n} be disjoint events.
Let $R_{0}=S \backslash \cup_{i=1}^{n} R_{i}$, so that $\left\{R_{0}, R_{1}, \ldots, R_{n}\right\}$ form a partition of S.
Let $Y_{0}, Y_{1}, \ldots, Y_{n}: S \rightarrow \mathbb{R}$ be the corresponding Bernoulli random variables.
Let $p_{i}=P\left(R_{i}\right)$.
Let n be an integer such that $0 \leq n \leq N$. Set

$$
T=\{A \in \mathcal{P}(S)| | A \mid=n\} .
$$

Then $|T|=\binom{N}{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F)=\frac{|F|}{|T|}=\frac{|F|}{\binom{N}{n}}$.

Define random variables $X_{i}: T \rightarrow \mathbb{R}$ by

$$
X_{i}(A)=\sum_{a \in A} Y_{i}(a)
$$

Then $X_{i}(A)=|A \cap R|$.
The image of X is

$$
\operatorname{img}(X)=\{0,1, \ldots, n\} .
$$

The density of X is

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{\binom{r}{x}\binom{N-x}{n-x}}{\binom{N}{n}} \quad \text { if } \quad x \in \operatorname{img}(X) ; \\
0 \quad \text { otherwise }
\end{array}\right.
$$

The expectation of X is

$$
E(X)=\frac{n r}{N}=n p
$$

Obtain this as follows. For $a \in S$, the number of sets in T containing a is $\binom{N-1}{n-1}$. Thus

$$
\begin{aligned}
E(X) & =\frac{1}{|T|} \sum_{A \in T} X(A) \\
& =\frac{1}{|T|} \sum_{A \in T} \sum_{a \in A} Y(a) \\
& =\frac{1}{|T|} \sum_{a \in R}|\{A \in T \mid a \in A\}| \\
& =\frac{1}{|T|} \sum_{a \in R}\binom{N-1}{n-1} \\
& =\frac{\binom{N-1}{n-1} r}{\binom{N}{n}} \\
& =\frac{n r}{N}
\end{aligned}
$$

Example 1. An urn contains 2 red balls, three white balls, and four blue balls. One selects four balls at random from the urn without replacement. Let X_{1} denote the number of red balls in the sample, let X_{2} denote the number of white balls in the sample, and let X_{3} denote the number of blue balls in the sample. Let $\vec{X}=\left(X_{1}, X_{2}, X_{3}\right)$.
(a) Find the range of (X, Y, Z).
(b) Find the value of the joint density of (X, Y, Z) at each point in the range.
(c) Find the joint marginal density of $(X, Y),(X, Z)$, and (Y, Z).
(d) Find the three univariate marginal densities.
(e) Find the density of $X+Z$.
(f) Find the expectations of $X, Y, Z, 2 X+3 Y$.

Solution. Let S be the set of balls in the urn, together with the uniform probability structure.

The range is
$\{(0,0,3),(0,1,2),(0,2,1),(0,3,0),(1,0,2),(1,1,1),(1,2,0),(2,0,1),(2,1,0)\}$.

