AP STATISTICS **TOPIC V: RANDOM VARIABLES**

PAUL L. BAILEY

Within this document, we will assume that all probability spaces are finite.

1. RANDOM VARIABLES

Definition 1. Let S be probability space. A random variable on S is a function

 $X: S \to \mathbb{R}.$

A random variable on a probability space S induces the structure of a probability space on the image, as follows. Let S be a probability space, $X: S \to \mathbb{R}$ a random variable, and $I = \operatorname{range}(X)$. Note that if S is finite, then so is I. For each point $x \in I$, assign the probability $f_X(x)$ to be the probability of the preimage of x under X.

Definition 2. Let $X : S \to \mathbb{R}$ be a random variable. The probability density function (pdf) of X is

$$f_X : \mathbb{R} \to [0, 1]$$
 given by $f_X(x) = P(X^{-1}(x)).$

This function is also known as the *probability mass function* (pmf).

Let $X: S \to \mathbb{R}$ be a random variable. The *cumulative density function* (cdf) of X is

$$F_X : \mathbb{R} \to [0,1]$$
 given by $F_X(x) = P(X^{-1}((-\infty, x])).$

Although the notation f_X is standard, we will more frequently use the following notation, which is also standard.

- $P(X = x) = P(X^{-1}(x))$ $P(X \le x) = P(X^{-1}((-\infty, x]))$ $P(x_1 \le X \le x) = P(X^{-1}([x_1, x_2]))$

Proposition 1. (Dirty Trick Theorem) Let $X: S \to \mathbb{R}$ be a random variable. Then

$$\sum_{x \in \mathbb{R}} P(X = x) = 1.$$

Definition 3. Let X and Y be random variables on S. We say that X and Y are independent if, for every $x, y \in \mathbb{R}$,

 $P(\{s \in X \mid X(s) = x \text{ and } Y(s) = y\}) = P(X = x) \cdot P(Y = y).$

Date: September 19, 2023.

2. EXPECTATION

Definition 4. Let $X : S \to \mathbb{R}$ be a random variable. The *expectation* of X is a real number

$$E(X) = \sum_{x \in \mathbb{R}} x P(X = x).$$

Proposition 2. Let S be a finite uniform probability space, and let $X : S \to \mathbb{R}$ be a random variable. Then

$$E(X) = \frac{1}{|S|} \sum_{s \in S} X(s).$$

Proof. We view the X as producing a statistical variable on the population S, with mean μ . Let $E_x = X^{-1}(x)$ denote the event the X = x; then $|E_x|$ is the number of members of S which map to x, and we have

$$\mu = \frac{1}{|S|} \sum_{s \in S} X(s)$$

$$= \frac{1}{|S|} \sum_{x \in \mathbb{R}} x |E_x|$$

$$= \sum_{x \in \mathbb{R}} x \frac{|E_x|}{|S|}$$

$$= \sum_{x \in \mathbb{R}} x P(X = x)$$

$$= E(x).$$

That is, the expectation of a random variable on a finite uniform probability space is the average value of the random variable. Thus if we let $\mu = E(X)$, we arrive at the mean of the population's values.

Proposition 3 (Linearity of Expectation). Let X and Y be random variables, and let $a \in \mathbb{R}$. Then

(a)
$$E(X+Y) = E(X) + E(Y);$$

(b)
$$E(aX) = aE(X)$$
.

Proposition 4 (Independence of Expectation). Let X and Y be independent random variables. Then

$$E(XY) = E(X)E(Y).$$

3. VARIANCE

Definition 5. Let S be a finite probability space and let $X : S \to \mathbb{R}$ be a random variable on S. Let $\mu = E(X)$. The *variance* of X is

$$V(X) = \sum_{x \in \mathbb{R}} (x - \mu)^2 P(X = x).$$

Proposition 5. Let S be a finite probability space and let $X : S \to \mathbb{R}$ be a random variable on S. Then

$$V(X) = E(X^2) - (E(X))^2.$$

Proof. Let $\mu = E(X)$. Then

$$V(X) = \sum_{x \in \mathbb{R}} (x - \mu)^2 P(X = x)$$

= $\sum_{x \in \mathbb{R}} x^2 P(X = x) - 2\mu \sum_{x \in \mathbb{R}} x P(X = x) + \mu^2 P(X = x)$
= $\sum_{x \in \mathbb{R}} x^2 P(X = x) - 2\mu \sum_{x \in \mathbb{R}} x P(X = x) + \mu^2$
= $\sum_{x \in \mathbb{R}} x^2 P(X = x) - 2\mu^2 + \mu^2$
= $\sum_{x \in \mathbb{R}} x^2 P(X = x) - \mu^2$
= $E(X^2) - (E(X))^2.$

We recall that the variance of a variable is $\sigma^2 = \frac{\sum (x - \mu)^2}{N}$, where N is the size of the population. If we apply this in our current context,

$$\sigma^{2} = \frac{\sum_{s \in S} (X(s) - \mu)^{2}}{|S|} = \sum_{x \in \mathbb{R}} (x - \mu)^{2} P(X = x).$$

Thus we set $\mu(X) = E(X)$ and $\sigma(X) = \sqrt{V(X)}$.

Proposition 6. Let S be a finite probability space. Let X and Y be independent random variables on S and let $a, b \in \mathbb{R}$. Then

$$V(aX + bY) = a^2 V(X) + b^2 V(Y).$$

Proof.

$$V(aX + bY) = E((aX + bY)^2) - E(aX + bY)^2$$

= $E(a^2X^2 + 2abXY + b^2Y^2) - (aE(X) + bE(Y))^2$
= $a^2E(X^2) + 2abE(XY) + b^2E(Y^2)) - (a^2E(X))$

4. Seven Great Discrete Distributions

We now describe the seven great discrete distributions:

- (1) Uniform Distribution
- (2) Binomial Distribution
- (3) Geometric Distribution
- (4) Poisson Distribution
- (5) Hypergeometric Distribution (Not on AP Exam)
- (6) Wilcoxon Distribution (Not on AP Exam)
- (7) Survey Distribution

Great Discrete Distribution 1. Uniform Distribution

Let S be a finite set of cardinality n, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P : \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{|S|} = \frac{|E|}{N}$. Let $X : S \to \{1, \dots, N\}$ be a bijective function. Then X is a discrete random

variable. We say that X has a *uniform distribution*.

The image of X is $\{1, \ldots, N\}$.

The density of X is

$$P(X = x) = \begin{cases} \frac{1}{N} & \text{if } x = \operatorname{img}(X); \\ 0 & \text{otherwise }. \end{cases}$$

The expectation of X is

$$E(X) = \frac{N+1}{2}.$$

Proof. Thus

$$E(X) = \sum_{x \in \mathbb{R}} xP(X = x)$$
$$= \sum_{k=1}^{N} k \cdot \frac{1}{N}$$
$$= \frac{1}{N} \sum_{k=1}^{N} k$$
$$= \frac{1}{N} \left(\frac{N(N+1)}{2} \right)$$
$$= \frac{N+1}{2}.$$

definition of expectation

definition of uniform distribution

since N is constant with respect to k

sum of an arithmetic series

Great Discrete Distribution 2. Binomial Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P : \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{|S|} = \frac{|E|}{N}$.

Let $R \subset S$ with |R| = r and let $p = P(R) = \frac{r}{N}$. Define a discrete random variable $Y : S \to \mathbb{R}$ by

$$Y(s) = \begin{cases} 1 & \text{if } s \in R \\ 0 & \text{if } s \notin R \end{cases}$$

We say that Y is the *bernoulli* random variable associated to the event R.

The density of Y is

$$P(Y = y) = \begin{cases} p & \text{if } y = 1; \\ 1 - p & \text{if } y = 0; \\ 0 & \text{otherwise} \end{cases}$$

Let *n* be a positive integer. Let $T = \times_{i=1}^{n} S$, the cartesian product of *S* with itself *n* times. Then $|T| = N^{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F) = \frac{|Q|}{|T|} = \frac{|F|}{N^{n}}$. Define a discrete random variable $X : T \to \mathbb{R}$ by

$$X(s_1,\ldots,s_n) = \sum_{i=1}^n Y(s_i).$$

We say that X has a binomial distribution.

The image of X is

$$img(X) = \{0, 1, 2, \dots, n\}.$$

The density of X is

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

The expectation of X is

$$E(X) = np.$$

Proof. Let q = 1 - p. Note that (n - 1) - (k - 1) = n - k, so $k\binom{n}{k} = k\frac{n!}{k!(n-k)!} = n\frac{(n-1)!}{(k-1)!(n-k)!} = n\binom{n-1}{k-1},$

Thus

$$\begin{split} E(X) &= \sum_{x \in \mathbb{R}} x P(X = x) \\ &= \sum_{k=0}^{n} k \binom{n}{k} p^{k} q^{n-k} \\ &= \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} \\ &= \sum_{k=1}^{n} n \binom{n-1}{k-1} p^{k} q^{n-k} \\ &= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k} \\ &= np \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j} \\ &= np(p+q)^{n} \\ &= np. \end{split}$$

definition of expectation

definition of binomial distribution

since for
$$k = 0$$
, $k \binom{n}{k} p^k q^{n-k} = 0$
since $k \binom{n}{k} = n \binom{n-1}{k-1}$

factor out np

put
$$m = n - 1$$
 and $j = k - 1$

Binomial Theorem since p + q = 1

The variance of X is

$$V(X) = npq.$$

Proof. We know that $V(X) = E(X^2) - (E(X))^2$. By definition, $E(X^2) = \sum_{x \in \mathbb{R}} x^2 P(X = x)$. Let q = 1 - p, so that p + q = 1. Then

$$\begin{split} E(X^2) &= \sum_{k=0}^n k^2 \binom{n}{k} p^k q^{n-k} \\ &= \sum_{k=0}^n kn \binom{n-1}{k-1} p^k q^{n-k} \\ &= np \sum_{k=1}^n k \binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)} \\ &= np \sum_{j=0}^m (j+1) \binom{m}{j} p^j q^{m-j} \quad \text{where } m = n-1 \text{ and } j = k-1 \\ &= np \left(\sum_{j=0}^m j \binom{m}{j} p^j q^{m-j} + \sum_{j=0}^m \binom{m}{j} p^j q^{m-j} \right) \\ &= np \left(\sum_{j=0}^m m \binom{m-1}{j-1} p^j q^{m-j} + \sum_{j=0}^m \binom{m}{j} p^j q^{m-j} \right) \\ &= np \left((n-1)p \sum_{j=0}^m \binom{m-1}{j-1} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^m \binom{m}{j} p^j q^{m-j} \right) \\ &= np \left((n-1)p(p+q)^{m-1} + (p+q)^m \right) \\ &= np((n-1)p+1) \\ &= n^2 p^2 + np(1-p) \\ &= npq + n^2 p^2 \end{split}$$

Thus

$$V(X) = E(X^{2}) - (E(X))^{2}$$

= $npq + n^{2}p^{2} - (np)^{2}$
= npq .

Great Discrete Distribution 3. Geometric Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P : \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{|S|} = \frac{|E|}{N}$. Let $R \subset S$ with |R| = r and let $p = P(R) = \frac{r}{N}$. Let $Y : S \to \mathbb{R}$ be the bernoulli are derived by $P(E) = \frac{|E|}{|S|} = \frac{|E|}{N}$.

random variable associated to R, so that

$$Y(s) = \begin{cases} 1 & \text{if } s \in R; \\ 0 & \text{if } s \notin R. \end{cases}$$

Let T be the set of all sequences in S, so that

$$T = \{ \sigma : \mathbb{N} \to S \}.$$

We wish to put a probability measure on T; however, T is an uncountable set. Let ${\mathcal E}$ be the sigma algebra generated by the sets

$$E_n(\tau) = \{ \sigma \in T \mid \sigma(i) = \tau(i) \text{ for all } i > n \}.$$

Define $Q(E_n(\tau)) = \frac{1}{N^n}$.

Define a discrete random variable $X: T \to \mathbb{R}$ by

$$X(\sigma) = \begin{cases} \min\{i \in \mathbb{N} \mid Y(\sigma(i)) = 1\} & \text{if this set is nonempty:} \\ 0 & \text{otherwise.} \end{cases}$$

We say that X has a *geometric* distribution.

The range of X is

$$img(X) = \{0, 1, 2, \dots\}.$$

The density of X is

$$f_X(x) = \begin{cases} p(1-p)^{x-1} & \text{if } x \in \{1, 2, \dots\}; \\ 0 & \text{otherwise.} \end{cases}$$

The expectation of X is

$$E(X) = \frac{1}{p}.$$

Proof. We have

$$\begin{split} E(X) &= \sum_{x \in \mathbb{R}} x P(X = x) \\ &= \sum_{k=1}^{\infty} k P(X = k) \\ &= \sum_{k=0}^{\infty} k p (1-p)^{k-1} \\ &= p \sum_{k=0}^{\infty} k (1-p)^{k-1} \\ &= p \sum_{k=0}^{\infty} (-\frac{d}{dp} (1-p)^k) \\ &= -p \cdot \frac{d}{dp} \sum_{k=0}^{\infty} (1-p)^k \\ &= -p \cdot \frac{d}{dp} \frac{1}{1-(1-p)} \\ &= -p \cdot \frac{d}{dp} \frac{1}{p} \\ &= -p \cdot \frac{-1}{p^2} \\ &= \frac{1}{p}. \end{split}$$

The variance of X is

$$V(X) = \frac{1-p}{p^2}.$$

Proof. We have

$$\begin{split} E(X^2) &= \sum_{x \in \mathbb{R}} x^2 P(X = x) \\ &= \sum_{k=1}^{\infty} k^2 P(X = k) \\ &= \sum_{k=0}^{\infty} k^2 p(1-p)^{k-1} \\ &= p \sum_{k=0}^{\infty} k(k+1)(1-p)^{k-1} - \sum_{k=0}^{\infty} kp(1-p)^{k-1} \\ &= p \sum_{k=0}^{\infty} (\frac{d^2}{dp^2}(1-p)^{k+1}) - E(X) \\ &= p \cdot \frac{d^2}{dp^2} \sum_{k=1}^{\infty} (1-p)^k - \frac{1}{p} \\ &= p \cdot \frac{d^2}{dp^2} (\frac{1}{1-(1-p)} - 1) - \frac{1}{p} \\ &= p \cdot \frac{d^2}{dp^2} (\frac{1}{p} - 1) - \frac{1}{p} \\ &= p \cdot \frac{2-p}{p^2}. \end{split}$$

Thus

$$V(X) = E(X^{2}) - (E(X))^{2} = \frac{2-p}{p^{2}} - \frac{1}{p^{2}} = \frac{1-p}{p^{2}}.$$

Okay Discrete Distribution 3. Truncated Geometric Distribution

Let S, R, and Y be as above. Let T be the cartesian product of S with itself n times. Define a discrete random variable $X:T\to\mathbb{R}$ by

$$X(s_1, \dots, s_n) = \begin{cases} \min\{i \le n \mid Y(s_i) = 1\} & \text{if this set is nonempty;} \\ 0 & \text{otherwise.} \end{cases}$$

We say that X has a *truncated geometric* distribution.

Great Discrete Distribution 4. Poisson Distribution

Let T be an infinite probability space and let $X: T \to \mathbb{R}$ be a random variable whose density function satisfying the following.

The image of X is

$$img(X) = \{0, 1, 2, 3, \dots\}.$$

The density of X is

$$f_X(x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & \text{for } x \in \operatorname{img}(X); \\ 0 & \text{otherwise.} \end{cases}$$

We say that X has a Poisson distribution.

The expectation of X is

$$E(X) = \lambda.$$

Proof. Consider that

$$\begin{split} E(X) &= \sum_{x \in \mathbb{R}} x P(X = x) \\ &= \sum_{k=0}^{\infty} k P(X = k) \\ &= \sum_{k=1}^{\infty} k e^{-\lambda} \frac{\lambda^k}{k!} \\ &= \frac{\lambda}{e^{\lambda}} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \\ &= \frac{\lambda}{e^{\lambda}} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \\ &= \frac{\lambda}{e^{\lambda}} e^{\lambda} \quad \text{using the Taylor series for } e^x \\ &= \lambda \end{split}$$

The variance of X is

$$V(X) = \lambda$$

Proof. Consider that

$$\begin{split} E(X^2) &= \sum_{x \in \mathbb{R}} x^2 P(X = x) \\ &= \sum_{k=0}^{\infty} k^2 P(X = k) \\ &= \sum_{k=1}^{\infty} k^2 e^{-\lambda} \frac{\lambda^k}{k!} \\ &= \frac{\lambda}{e^{\lambda}} \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} \\ &= \frac{\lambda}{e^{\lambda}} \left(\sum_{k=1}^{\infty} (k-1) \frac{\lambda^{k-1}}{(k-1)!} + \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \right) \\ &= \frac{\lambda}{e^{\lambda}} \left(\lambda \sum_{k=2}^{\infty} (k-2) \frac{\lambda^{k-2}}{(k-2)!} + \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \right) \\ &= \frac{\lambda}{e^{\lambda}} \left(\lambda \sum_{i=0}^{\infty} i \frac{\lambda^i}{i!} + \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \right) \\ &= \frac{\lambda}{e^{\lambda}} \left(\lambda e^{\lambda} + e^{\lambda} \right) \\ &= \lambda(\lambda+1) \\ &= \lambda^2 + \lambda. \end{split}$$

Thus

$$V(X) = E(X^2) - (E(X))^2 = \lambda^2 + \lambda - \lambda^2 = \lambda.$$

The Poisson distribution is the limit of the binomial distribution in the following sense.

Let $p \in (0, 1)$ and let X_n be a random variable with binomial (n, p) distribution. Then $\mu = E(n) = np$, so $p = \mu/n$. Let $\rho_n : \mathbb{R} \to \mathbb{R}$ denote the density of the n^{th} binomial distribution. For $x = 0, 1, \ldots, n$, we have

$$\rho(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \frac{n(n-1)(n-2)\cdots(n-x+1)}{x!} \left(\frac{\mu}{n}\right)^x \left(1-\frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-x+1}{n} \cdot \frac{\mu^x}{x!} \cdot \left(1-\frac{\mu}{n}\right)^n \left(1-\frac{\mu}{n}\right)^{-x}$$

Taking the limit as $n \to \infty$ yields

$$\rho(x) = \frac{\mu^x e^{-\mu}}{x!}.$$

It is simply traditional to use λ as opposed to μ for the Poisson distribution.

Great Discrete Distribution 5. Hypergeometric Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P : \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{N}$. Let $R \subset S$ with |R| = r and let $p = P(R) = \frac{r}{N}$. Let $Y : S \to \mathbb{R}$ be the bernoulli

random variable associated to R, so that

$$Y(s) = \begin{cases} 1 & \text{if } s \in R; \\ 0 & \text{if } s \notin R. \end{cases}$$

The expectation of Y is

$$E(Y) = p.$$

Let n be an integer such that $0 \le n \le N$. Set

$$T = \{A \in \mathcal{P}(S) \mid |A| = n\}.$$

Then $|T| = \binom{N}{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F) = \frac{|F|}{|T|} = \frac{|F|}{\binom{N}{n}}$. Define a random variable $X : T \to \mathbb{R}$ by

$$X(A) = \sum_{a \in A} Y(a)$$

Then $X(A) = |A \cap R|$. The image of X is

$$img(X) = \{0, 1, \dots, n\}$$

The density of X is

$$f_X(x) = \begin{cases} \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}} & \text{if } x \in \operatorname{img}(X);\\ 0 & \text{otherwise.} \end{cases}$$

The expectation of X is

$$E(X) = \frac{nr}{N} = np.$$

Obtain this as follows. For $a \in S$, the number of sets in T containing a is $\binom{N-1}{n-1}$. Thus

$$\begin{split} E(X) &= \frac{1}{|T|} \sum_{A \in T} X(A) \\ &= \frac{1}{|T|} \sum_{A \in T} \sum_{a \in A} Y(a) \\ &= \frac{1}{|T|} \sum_{a \in R} |\{A \in T \mid a \in A\}| \\ &= \frac{1}{|T|} \sum_{a \in R} \binom{N-1}{n-1} \\ &= \frac{\binom{N-1}{n-1}r}{\binom{N}{n}} \\ &= \frac{nr}{N}. \end{split}$$

Great Discrete Distribution 6. Wilcoxon Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P : \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{N}$. Let $Y : S \to \{1, 2, \dots, N\}$ be a bijective random variable.

The expectation of Y is

$$E(Y) = \frac{1}{N} \sum_{i=1}^{N} i = \frac{1}{N} \cdot \frac{N(N+1)}{2} = \frac{N+1}{2}.$$

Let n be an integer such that $0 \le n \le N$. Set

$$T = \{A \in \mathcal{P}(S) \mid |A| = n\}.$$

Then $|T| = \binom{N}{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F) = \frac{|F|}{\binom{N}{n}}$. Define a random variable $X: T \to \mathbb{R}$ by

$$X(A) = \sum_{a \in A} Y(a).$$

We say that X has a Wilcoxon distribution.

The image of X is

$$\operatorname{img}(X) = \{\frac{n(n+1)}{2}, \frac{n(n+1)}{2} + 1, \dots, \frac{N(N+1)}{2} - \frac{(N-n)(N-n+1)}{2}\}.$$

The density of X is difficult to describe.

The expectation of X is

$$E(X) = \frac{n(N+1)}{2}.$$

Great Discrete Distribution 7. Sample Survey Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P : \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{N}$.

Let $Y: S \to \mathbb{R}$ be a discrete random variable.

Let n be an integer such that $0 \le n \le N$. Set

$$T = \{A \in \mathcal{P}(S) \mid |A| = n\}.$$

Then $|T| = \binom{N}{n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F) = \frac{|F|}{\binom{N}{n}}$. Define a random variable $X: T \to \mathbb{R}$ by

$$X(A) = \sum_{a \in A} Y(a).$$

We say that X has a *sample survey* distribution.

The image of X is determined by the image of Y.

The density of X is difficult to describe.

The expectation of X is

$$E(X) = nE(Y).$$

Obtain this as follows.

$$\begin{split} E(X) &= \frac{1}{|T|} \sum_{A \in T} X(A) \\ &= \frac{1}{|T|} \sum_{A \in T} \sum_{a \in A} Y(a) \\ &= \frac{1}{|T|} \sum_{a \in S} |\{A \in T \mid a \in A\}| \cdot Y(a) \\ &= \frac{1}{|T|} \sum_{a \in S} \binom{N-1}{n-1} Y(a) \\ &= \frac{\binom{N-1}{n-1}}{\binom{N}{n}} \sum_{a \in S} Y(a) \\ &= \frac{n}{N} \sum_{a \in S} Y(a) \\ &= nE(Y). \end{split}$$

5. RANDOM VECTORS

Definition 6. Let (S, \mathcal{E}, P) be a probability space. A function $\vec{X} : S \to \mathbb{R}^n$ is called a *random vector* if $\vec{X}^{-1}((-\infty, a]^n) \in \mathcal{E}$ for every $a \in \mathbb{R}$.

Proposition 7. Let $\vec{X} : S \to \mathbb{R}^n$ be a random variable.

(a) If $B \subset \mathbb{R}$ is an box, then $X^{-1}(B) \in \mathcal{E}$.

(b) If $\vec{x} \in \mathbb{R}^n$, then $\vec{X}^{-1}(x) \in \mathcal{E}$.

Remark 1. Let $\{A_1, \ldots, A_n\}$ be a collection of sets and let $A = \times_{i=1}^n$ be their cartesian product. Define a function $\pi_i : A \to A_i$ by $\pi_i(a_1, \ldots, a_n) = a_i$. This function is called *projection on the i*th *component*.

Let $f : B \to A$ be a function. Define a function $f_i : B \to A_i$ by $f_i = \pi_i \circ f$. This function is called the *i*th component function of f. We see that $f(b) = (f_1(b), \ldots, f_n(b))$.

Let $\vec{a} = (a_1, \dots, a_n) \in A$. Then $f^{-1}(\vec{a}) = \bigcap_{i=1}^n f_i^{-1}(a_i)$. Let $A = A_1 \times A_2$. Let $f : B \to A$. Let $\vec{a} = (a_1, a_2)$. Then (a) $f^{-1}(\vec{a}) = f_1^{-1}(a_1) \cap f_2^{-1}(a_2)$; (b) $f_1^{-1}(a_1) = \bigcup_{a_2 \in \operatorname{img}(f_2)} f_2^{-1}(a_2)$.

Proposition 8. Let $\vec{X} : S \to \mathbb{R}^n$ and let $X_i : S \to \mathbb{R}$ be the *i*th component function of \vec{X} . Then X_i is a random variable.

Definition 7. Let $\vec{X} : S \to \mathbb{R}^n$ be a random vector. We say that \vec{X} is *discrete* if $\vec{X}(S)$ is countable.

Definition 8. Let $\vec{X} : S \to \mathbb{R}^n$ be a discrete random vector. The *joint density* of \vec{X} is a function

$$f_{\vec{X}} : \mathbb{R} \to [0, 1]$$
 given by $f_{\vec{X}}(\vec{x}) = P(X^{-1}(\vec{x})).$

Proposition 9. Dirty Trick Theorem Revisited Let $\vec{X} : S \to \mathbb{R}^n$ be a discrete random vector. Then

$$\sum_{\vec{x} \in \operatorname{img}(\vec{X})} f_{\vec{X}}(\vec{x}) = 1$$

Let [X = x] denote the preimage of x under the random variable X.

Proposition 10. Let $\vec{X} : S \to \mathbb{R}^n$ be a discrete random vector. Let $x \in \text{img}(\vec{X})$. Then $f_{\vec{X}}(x) = P(\bigcap_{i=1}^n [X_i = x_i])$.

Proposition 11. Let $\vec{X} : S \to \mathbb{R}^2$ be a discrete random vector. Let $X, Y : S \to \mathbb{R}$ be the components of \vec{X} . Then

$$f_{X_1}(x) = \sum_{y \in \operatorname{img}(Y)} f_{\vec{X}}(x, y).$$

Multinomial Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P: \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{|S|} = \frac{|E|}{N}$.

Let R_1, \ldots, R_n be disjoint events.

Let $R_0 = S \setminus \bigcup_{i=1}^n R_i$, so that $\{R_0, R_1, \ldots, R_n\}$ form a partition of S. Let $Y_0, Y_1, \ldots, Y_n : S \to \mathbb{R}$ be the corresponding Bernoulli random variables. Let $p_i = P(R_i)$.

Let n be a positive integer. Let $T = \times_{i=1}^{n} S$, the cartesian product of S with itself *n* times. Then $|T| = N^n$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F) = \frac{|Q|}{|T|} = \frac{|F|}{N^n}$. Define discrete random vectors $X_i : T \to \mathbb{R}$ by

$$X(s_1,\ldots,s_n) = \sum_{i=1}^n Y(s_i).$$

Define a discrete random vector $\vec{X}: T \to \mathbb{R}^n$ by $\vec{X} = (X_1, \dots, X_n)$. Multivariate Hypergeometric Distribution

Let S be a finite set of cardinality N, and form the uniform probability space $(S, \mathcal{P}(S), P)$, where $P : \mathcal{P}(S) \to [0, 1]$ is given by $P(E) = \frac{|E|}{N}$.

Let R_1, \ldots, R_n be disjoint events.

Let $R_0 = S \setminus \bigcup_{i=1}^n R_i$, so that $\{R_0, R_1, \ldots, R_n\}$ form a partition of S. Let $Y_0, Y_1, \ldots, Y_n : S \to \mathbb{R}$ be the corresponding Bernoulli random variables. Let $p_i = P(R_i)$.

Let n be an integer such that $0 \le n \le N$. Set

$$T = \{A \in \mathcal{P}(S) \mid |A| = n\}.$$

Then $|T| = {N \choose n}$. Form the uniform probability space $(T, \mathcal{P}(T), Q)$, where for $F \subset T$ we have $Q(F) = \frac{|F|}{|T|} = \frac{|F|}{\binom{N}{n}}$. Define random variables $X_i: T \to \mathbb{R}$ by

$$X_i(A) = \sum_{a \in A} Y_i(a).$$

Then $X_i(A) = |A \cap R|$. The image of X is

$$img(X) = \{0, 1, \dots, n\}.$$

The density of X is

$$f_X(x) = \begin{cases} \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}} & \text{if } x \in \operatorname{img}(X);\\ 0 & \text{otherwise.} \end{cases}$$

The expectation of X is

$$E(X) = \frac{nr}{N} = np.$$

Obtain this as follows. For $a \in S$, the number of sets in T containing a is $\binom{N-1}{n-1}$. Thus

$$E(X) = \frac{1}{|T|} \sum_{A \in T} X(A)$$

$$= \frac{1}{|T|} \sum_{A \in T} \sum_{a \in A} Y(a)$$

$$= \frac{1}{|T|} \sum_{a \in R} |\{A \in T \mid a \in A\}|$$

$$= \frac{1}{|T|} \sum_{a \in R} \binom{N-1}{n-1}$$

$$= \frac{\binom{N-1}{n-1}r}{\binom{N}{n}}$$

$$= \frac{nr}{N}.$$

Example 1. An urn contains 2 red balls, three white balls, and four blue balls. One selects four balls at random from the urn without replacement. Let X_1 denote the number of red balls in the sample, let X_2 denote the number of white balls in the sample, and let X_3 denote the number of blue balls in the sample. Let $\vec{X} = (X_1, X_2, X_3)$.

- (a) Find the range of (X, Y, Z).
- (b) Find the value of the joint density of (X, Y, Z) at each point in the range.
- (c) Find the joint marginal density of (X, Y), (X, Z), and (Y, Z).
- (d) Find the three univariate marginal densities.
- (e) Find the density of X + Z.
- (f) Find the expectations of X, Y, Z, 2X + 3Y.

 $Solution. \ Let S$ be the set of balls in the urn, together with the uniform probability structure.

The range is

$$\{(0,0,3), (0,1,2), (0,2,1), (0,3,0), (1,0,2), (1,1,1), (1,2,0), (2,0,1), (2,1,0)\}.$$

DEPARTMENT OF MATHEMATICS, PARAGON SCIENCE ACADEMY Email address: pbailey@sonoranschools.org